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A general multidomain decomposition is proposed for the numerical 
solution of the 2D incompressible stationary Navier-Stokes equations. 
The solution technique consists in a Chebyshev orthogonal collocation 
method preconditioned by a standard Galerkin finite element tech- 
nique. The preconditioned system is then solved through a Richardson 
procedure. The domain of interest is decomposed into quadrilaterals, 
curved when needed. A Gordon transfinite interpolation performs the 
curvilinear grid generation of the obtained simply-connected planar 
subdomains. The interface conditions, naturally incorporated into the 
finite element approach, relate neighbour subdomains through the 
normal jump of appropriate fluxes across internal boundaries, where an 
integral form of C’ continuity is consequently achieved at convergence 
of the iterative processes. The study of model Stokes problems 
demonstrates that the current method still behaves spectrally in 
distorted geometries. For curvilinear distortion, a loss of several orders 
of magnitude is-observed in the solution accuracy even when the 
distortion is very limited. Finally, some results of flow simulation 
in a constricted channel are proposed to illustrate the abilities of 
the present method to treat Navier-Stokes problems. 0 1993 Academic 

Press, Inc. 

1. INTRODUCTION 

Various spectral methods are currently developed and 
used in computational fluid dynamics. Their major advan- 
tage is the high accuracy attained by the resulting discretiza- 
tion for a given number of nodes or, consequently, the 
saving of the computational ressources for a given accuracy. 
The difficulty to apply such methods to real-life problems 
arises when the geometry to be considered departs from a 
simple rectangle, as first emphasized by Orszag [29]. 

In the past decade intensive research has been devoted to 
overcome this apparent limitation. The present cure tech- 
niques may be set into two main categories, although com- 
binations of both are effectively used. On the one hand, 
domain decomposition methods allow the partitioning of 
the global geometry into elementary quadrangles. Active 
investigation still goes on in this field, as underlined by the 
numerous contributions to dedicated symposiums [S, 61. 

On the other hand, suitable coordinate transformations are 
created in order to map the arbitrary physical domain into 
the reference square space where the polynomial basis 
used as interpolants are defined. For 2D computations, such 
transformation methods take on different forms: algebraic 
interpolation, conformal mapping, or the solution of dif- 
ferential equations, summing up in a widespread field as 
surveyed, for instance, by Eiseman [ 171. Some spectral 
practitioners proposed their own technique to cope with 
non-rectangular geometries. In the case of the numerical 
solution of the Navier-Stokes equations, Patera and co- 
workers [26] developed the spectral element method which 
combines mappings to a domain decomposition strategy 
[25]. Curvilinear subdomains were incorporated by 
Metivet [27] into a Schwarz domain decomposition algo- 
rithm applied to a spectral collocation method. 

In the same framework of spectral methods for curved 
geometries, we propose a preconditioned Chebyshev 
collocation technique [13] to solve the 2D incompressible 
stationary Navier-Stokes equations in the primitive 
variables formulation. The dependent variables are 
represented by a series of basis functions involving 
Chebyshev polynomials. A Newton linearization is carried 
out on the continuous equations. The problem discretiza- 
tion is then achieved by an orthogonal collocation method. 
To improve the conditioning of the resulting system of 
algebraic equations, this approach is preconditioned by a 
standard Galerkin finite element (FE) technique, which 
incorporates the classical nine-node Lagrangian element. 
The preconditioning then leads us to solve the system 
through a Richardson iterative procedure. This method 
presents major numerical advantages [14, 151 and is 
demonstrated to be an efficient way to attain the attractive 
properties of a spectral method [9]. Navier-Stokes 
problems in nontrivial geometries were handled so far 
through a domain decomposition into rectangular sub- 
domains [ 101. 

In this paper, the method is extended to the solution of 
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the governing equations in general complex geometries. The 
computational domain is decomposed into quadrangles, 
curved when needed. A Gordon transfinite interpola- 
tion [20] performs the curvilinear grid generation of 
the obtained simply-connected planar subdomains. The 
mapping is expressed in terms of the parametric representa- 
tion of the curved boundaries. The resulting collocation grid 
used to solve the governing equations is parametrizable by 
polynomials of the same order as the discretization within 
each considered subdomain. The interface conditions, 
naturally incorporated into the finite element approach, 
relate neighbour subdomains through the normal jump of 
appropriate fluxes across internal boundaries, where an 
integral form of C ’ continuity is consequently achieved over 
the velocity field once the iterative procedures have 
converged. 

In the comparison of collocation with other speciral 
methods, we will refer only to the spectral element method 
[26] which is significantly different by its underlying prin- 
ciples. In our collocation method, the second-order partial 
differential equation (pde) is satisfied at given points by the 
approximate solution. The solution must then belong to a 
space of functions H’(Q) in which the derivatives of the 
functions up to the second-order must be square integrable. 
Even in our technique which is preconditioned by an 
operator defined from a weak form of the initial problem, 
the strong formulation of the residuals to the pde must be 
computed and the functions considered have to belong to 
HZ(Q). Conversely, the spectral element method relies on a 
variational statement of the initial problem. The computa- 
tion of the variational form involves integration by parts. 
For second-order pde’s, the resulting expression does not 
contain any second-order derivatives. Thus, such a formula- 
tion will be well defined if the first derivative of the solution, 
rather than the second, is required to be square integrable. 
Therefore, the possibility arises of enlarging the class of 
functions which are admissible in the variational problem 
to a space H’(Q) bigger than H2(sZ). Regarding domain 
decomposition, the flux continuity at element interfaces is 
automatically satisfied as part of the numerical process of 
the spectral element method. Because of its variational for- 
mulation basis, the method uses trial functions which are Co 
across boundaries. A weak matching of the first derivatives 
is obtained without the need to impose it explicitly, as the 
solution is sought in H’(Q). This gives the spectral element 
method a great deal of flexibility with respect to domain 
partitioning. Conversely, our technique, derived from 
strong collocation, requires the enforcement of the 
continuity of the function and of its derivative along each 
internal boundary created by domain decomposition. We 
impose, in effect, that the solution is C’. The introduction of 
the FE preconditioner facilitates somewhat the treatment of 
the internal boundaries. A more detailed comparison can 
be found in [ 363. 

Section 2 gives the basic equations. In Section 3, the 
mathematical tools are defined. The transformation method 
is presented in Section 4. Section 5 describes briefly the 
collocation technique and the preconditioned iterative 
approach. In Section 6, the domain decomposition applied 
to curved geometries is studied. Section 7 is devoted to the 
detailed discussion of simulation results of model Stokes 
problems in complex geometries together with complicated 
Navier-Stokes flow solutions. 

2. BASIC EQUATIONS 

The steady-state Navier-Stokes equations are written in 
stress formulation: 

p(u .V)u = div u + pb, (2.la) 

div u = 0, (2.lb) 

with the constitutive equations of a newtonian fluid 

u= -pl+2pd, (2.lc) 

d = f [Vu + (VU)~], (2.ld) 

where u denotes the velocity field, p the pressure, p the 
dynamic viscosity, b the body force, u the stress tensor, I the 
unit tensor, d the rate of deformation tensor. Each term 
with the superscript T is transposed. Equation (2.la) is 
the momentum equation while Eq. (2.lb) enforces the con- 
tinuity constraint for incompressible fluids. 

Equations (2.1) are solved on the physical domain 0. The 
boundary conditions are given by the relationship 

Bu=g, on ai-2, (2.2) 

where LX2 represents the external boundary of the domain 
0. If the set r contains B boundary segments closing fi and 
denoted by rb, b = 1, . . . . B, the boundary aQ is thus 
represented by elements from two subsets of f, r, and r,, 
depending on the type of boundary condition applied on 
them. At each point of %2 denoted by its position vector x, 
we have 

essential (Dirichlet) boundary conditions, 
which apply on each point of an, composed 
by elements of ZY, : 

u(x) = IL(X)> VXE~Q,, (2.3) 

natural boundary conditions applied on X?, 
described by elements of r, = r\r, : 

t(x) = n . u = g2(x), bfEaS2,. (2.4) 

In (2.4), t is the stress vector which is related to the stress 
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tensor Q through the Cauchy principle (first equality in 
(2.4)). Here, n is the unit outward normal vector to 8%. 

We treat the non-linearity of Eq. (2.la) by Newton’s 
linearization. Assuming that the Frechet derivatives of the 
Navier-Stokes operator exist and denoting by 6u and 6a 
the variations of the velocity field and the stress tensor, 
respectively, the linearized Navier-Stokes equations are 

p[(un.V)6u+(6u.V)u”]-div6a 

= div u” + p b” - p(u” . V) u”, 

div 6u= -div u”, 

(2.5a) 

(2.5b) 

for 

U n+1=Un+6u, un+1=un+6u, 

where the superscript refers to the iteration index of the 
Newton’s scheme. Equations (2.5) are solved with the 
following boundary conditions: 

bu=O, vx E asz,, (2.6) 

and 

6t=ne6u= -t”+g,(x), maa,. (2.7) 

3. NOTATIONS AND DEFINITIONS 

Although in this paper the same notations as in [9, lo] 
are used, they are generalized to the case where a curvilinear 
coordinates transformation is implied. We introduce the 
reference square fi = ] - 1, 1 [ 2 and its border f, described 
by a set of four intervals d = [ ; 1, + 11. The closed 
reference space will be denoted IR. In order to map 
boundary value problems for the partial differential equa- 
tion defined on J2 onto the reference square, Sz must be a 
bounded, simply connected, and non-empty subspace of R2. 
As previously mentioned, rdenotes the set of the boundary 
segments closing the overall domain. Furthermore, we 
postulate the following assumptions: 

l there exists an open subset 6 in R2 containing 6 and 
an application F: 6 + R! 2, F E C’( 8), s > 1, injection on f. 
The transformation jacobian J,, for two strictly positive 
constants tl and B, must verify that 

VEEJ, a < JF(T) <B, (3.1) 

l the application F maps the reference border f onto the 
physical domain border l? 

F(f) = l-. (3.2) 

The function F is a continuous vector-valued function of 
two independent variables. If the knction F satisfies these 
properties, F is also a bijecgon on Sz and one may introduce 
its inverse F-’ = G: 0 + Sz, G E Co(a). Consequently, we 
will denote by r = {r, s} any point in d and by x = {x, y} 
any point in 0, such that 

a = {x = F(r); Irl d 1, IsI < l}. (3.3) 

The continuous vector-valued diffeomorphism F of the 
two independent variables (r, s} is of course unknown and 
we have to construct a univalent function which matches F 
on the boundary, in other words create its approximation 
that we wilLdenote by F1,,. For a given space of polyno- 
mials Pn,,(s2) of degree lower or equal to 1 (resp. P) related 
to the fir$ (resp. secznd) space coordinate and a projector 
Z A,p: Co(O) + PJSZ), we have 

(3.4) 

The discussion of the projector IA,, and its consequent 
approximation FA,, is deferred to a further section. Without 
going into the details, the discrete mapping F,,, satisfies, 
by construction, the same assumptions (3.1) to (3.3) as the 
continuous mapping F. 

Let us denote by N the couple (N,, , NJ E N x N, where 
N is the set of natural numbers. Spatial discretization 
proceeds by covering the physical domain B with a discrete 
Chebyshev mesh %N which coincides with the domain at the 
boundaries. The mesh $& results from the discrete mapping 
in the reference square of the Chebyshev grid yN, itself 
a tensor product of the one-dimensional Gauss-Lobatto- 
Chebyshev (GLC) quadrature grid. Thus, one may write 

(3.5a) 

BN = @ gx,;N,,, i= 1,2, (3.5b) 

with gXiiNX, being the roots of the equation 

(1 -z’) ThXi=O, ZE c-1,11, (3.6) 

where Tkxi denotes the first-order derivative of the 
Chebyshev polynomial of the first kind and degree NXi. 

Because of the finite element preconditioning of the 
Chebyshev collocation scheme, a finite element mesh is 
defined over the collocation grid. Following Ciarlet [S], 2~ 
is the collection of K curvilinear quadrangles whose comer 
vertices coincide with four neighbouring gridpoints of go 
such that ZZN = Uk QR, k = 1, . . . . K. Let P,,,, denote the 
space of two-dimensional Lagrangian finite elements which 
restrict to nth degree interpolants over each quadrangle 
Qk E Z?N. Here, we will restrict ourselves to n = 1,2. Thb 
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space P, will contain all the continous functions in fi, 
which are polynomials of degree NXi in the xi variable. 

The FE spaces are defined in Demaret and Deville [lo]. 
They correspond to the well-known nine-nodes Lagrangian 
element, where the velocities and pressures are 
approximated by biquadratic and bilinear interpolants, 
respectively. In this context, the velocities are searched in 
VT,,, the FE discrete space of functions which satisfy 
homogeneous conditions. The FE and the spectral inter- 
polators, denoted I,, and Z,, respectively, are also 
introduced in the same paper. 

On any point of 852,, normal stresses are computed by 
the spectral interpolation operator IT,,, defined as follows: 

I 

vrb E r, b = 1, . . . . B 
Z r,N: CO(fb) + PNXi' 

Z I-,N = with N,, polynomial degree on Zb (3.7) 

The same operator is applied to the natural boundary 
condition g,(x,). 

Finally, two other geometric transformations take place 
in the definition of the problem. We will refer to Fig. 3.1 for 
these definitions. The first one concerns the local mappings 
f,Phy” from the [ - 1, + l] x [ - 1, + 11 parent element o of 
the FE technique to the elements of the physical mesh. 
There exists one of such mappings for any one of the 
elements. That continuous mapping must satisfy the same 
properties as the global mapping F. Any point in o is 
denoted by its coordinates 5 = { <, II}. Let us consider the 
element Qk = 2?N whose vertices belong to the set (1;,,, of 
global nodes for the FE mesh. The element Qk can be 
considered as 

Q,t = {x = fk'hy"(O ltl < 1, lrll Q I}. (3.8) 

I (zT,Nf)(Xi) = t(xi)P VxieCGNnT, The second family of local mappings fyf is also delined over 
0, Vxie?JNnTe the parent element o but its domain of application is now 

Physical Domain 

Parent Element [-i,+l]x[-l,+l] 

- --e 
l collocation nodes 

* extra FE biquadratic nodes 

Reference Unit S&are [-l,+l]x[-l,+l] 
FIG. 3.1. Sketches of the different coordinates transformations involved in the solution procedure. 
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one of the elements in the reference square. All the nodes in 
gZ2,,, supporting the element Qk are mapped from corre- 
sponding nodes in g2,,, through the global vector valued 
function F1,,, the same way as the physical collocation grid 
‘Z& is the mapping of the GLC grid gN (Eq. (3.5a)). Thus, it 
is possible to assess that any element Qk is the image of one 
single rectangular element pk of the reference square which 
is therefore entirely cTered by the collection of the pk’s. 

The element pk in 52 is considered in turn as 

Pk= {r=f:f(!); iti< 1, id G1}, (3.9) 

and there exists also as many mappings fp’ as there are 
elements in the FE mesh. 

The continuous functions f? and fpf are unknown and 
approached by suitable approximations fkphhys and fp,f, 
respectively, where h denotes the degree of the’interpolation 
used. 

It is important to note that the mappings fp are afline 
transformations since they map the parent element o onto 
rectangles of the GLC grid contrarywise to fy and Fn,r 
which map squares or rectangles onto distorted quad- 
rangles of the physical domain (refer to Fig. 3.1). 

All the global and local mappings introduced in this 
section are of course related. The following conditions must 
be verified: Qx,, VX,E Qk in D, we have 

x, = FL,,@,); I4 < 1, I4 < 1, ra:EPky t3-loa) 

and since ra = f,R,“,f(s,), 

x, = W,,~ ft,?K); ItI < 1, lrll < 1, WOb) 

but we have also 

xp = f$%); Id G 1, Id G 1, (3.1Oc) 

and, except for an element of q,,, (support of the FE 
isoparametric interpolations fE,y) a point xg does not 
necessarily coincide with the point x, for the same 5, in the 
parent element. 

4. TRANSFORMATION METHODS 

The spatial discretization proceeds by covering the physi- 
cal non-rectilinear domain with? collocation grid, mapping 
of a regular Chebyshev grid in Sz (Eqs. (3.5)). The mapping 
used is an approximation of the continuous unknown 
mapping. 

The key problem is how to create that approximation 
F l,p. That problem was already encountered in finite dif- 
ferences as well as in finite elements and was intensively 
studied. The methods for 2D structured grid generation are 

cast into three groups: methods involving the solution of 
partial differential equations, conformal mappings, and 
grids created by interpolation from the boundaries. The lat- 
ter methods were particularly investigated by Gordon et al. 
[20,21]. Their major advantage is that they can be easily 
implemented for arbitrary, simply connected, bounded 
domains. In [18] interpolation from the boundaries corn. 
pared favorably to different grid generation techniques for 
the solution of the Poisson equation over non-rectilinear 
spectral domains. Metivet [27] used the same method in 
the spectral solution of the Navier-Stokes equations. 

Gordon’s work postulates the existence of the continuous 
function F (a priori unknown) which maps the reference 
square onto the physical domain (curvilinear quadrangle). 
The mapping F satisfies the properties already mentioned in 
Section 3. Interpolation of F can be viewed as the search for 
a projector P such that the projection P[F], among other 
interpolation properties, matches F on the domain bound- 
aries. The projector P is a linear operator whose domain is 
the linear space 9 of continuous functions defined on 6. 
Given a function f(z): [ - 1, + l] + R, Gordon defines its 
projection P[f] as 

fw-l(z) = i d,(z) ~jmzh 
p=l 

(4.1) 

where {AL, p = 1, P} is a set of bounded linear forms over 
C’(A), /i = [ - 1, + l] such that, for a point zp in ;i, 
n,(f(z)) =f(z,) and (d,,p = 1, P} are the set of orthogonal 
basis functions in a Lagrange interpolation problem. The 
two sets satisfy a cardinality relationship: 

4(4,(z)) = a,, I,p= 1, . ..) P, (4.2) 

with 6,p the Kronecker symbol. 
In order to build two-dimensional interpolation, a 

one-dimensional projector is defined for each coordinate 
direction in the reference square: 

P,C.l= 5 d;(r) A;(.), 
p=l 

psc-1 = 5 4”,(s) q-J. 
g=l 

(4.3a) 

(4.3b) 

The two-dimensional projector (P,O P,), defined by the 
Boolean sum of one-dimensional projectors P,, P,, inter- 
polates a function at a non-denumerable set of points as 
interpolation is performed along the P, + Q, lines r = rpg 
l<p<P,, and s=sq, 1 <q < Q,. Thus, considering the 
unknown mapping F, and two interpolation points 
(rl, s1 = - 1, r2, s2 = + 1) in each direction (P,, Qs = 2), 
the projection of F will involve F(ri, si), i, j= 1,2, the 
coordinates in the physical space of the four vertices of the 
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curvilinear quadrangle and the four parametrizations 
F(ri, s) and F(r, si) which describe the curved side segments. 

The mapping of the distorted Chebyshev grid introduced 
in the previous sections is constructed by means of one 
of the transformations proposed by Gordon. A linear 
translinite interpolation is sufficient to match our only 
requirement to lit the domain boundaries. 

The domain Sz to be discretized is a simply connected 
open domain, its boundary f is a curved quadrilateral, and 
its vertices are ai, 1 < i < 4. In addition to the coordinates ai 
of the four vertices, the parametrization 7,(z) of the curves 
drawing the four curved segments constituting Z are given. 

Each function 7i : il + R2, 1 < i < 4, must be injective over 
d and verifies the following conditions: 

71(~)n73(~)=7,(-1)=73(-l)=al, - 

72(~)n73(ji)=r2(-1)=r3(+l)=a4, 

72(jI)n74(/I)=72(+1)=r4(+1)=a3, 

71(/l)n74(jI)=rl(+1)=r4(-1)=a2. 

The boundary r is smooth enough to be represented by 
the ri functions which are thus assumed to be C’ over ;i. 
The projector Zn+[ .] of Eq. (3.4) is identified to the Gordon 
bilinear projector (P, @ P,) [ .I, with 1, p = 1. 

The approximate mapping F,, 1 : ri = (r, s} E 6 + 
FA+(ri) E R2 for I, ZJ = 1 is then 

FI,I(~, s) = 4;(r) 7,(s) + d;(r) 7h) + 4;(s) r,(r) 

+ MS) 72(r) - 4;(r) 4;(s) a1 

-d;(r) 4;(s) a2 - d;(r) MS) a3 

-d;(r) &(s) a4. (4.4) 

The so-called blending functions are in this bilinear case for 
anyr,sE[-l,l]: 

#i(r)=%, #i(r)=?, 

At this stage, it must be emphasized that it is impossible 
to prove, on a purely analytical or numerical basis, whether 
or not the approximation F,, l(r, s) satisfies for any mapping 
the properties mentioned in Section 3. In order to ensure the 
correctness of the constructed mapping, those properties are 
verified over a discrete set of points. The immediate choice 
in our case is 9, the set of all the points ri in the reference 
space such that F,,,(rJ E c?&~. 

For instance, property (3.1) is verified by the existence of 
two strictly positive constants CY’ and /I’ such that 

Vr,Ey, Co < JFI,I(r) < B’. (4.5 1 

Property (3.2) is of course satisfied by construction of F,, 1. 
On a purely heuristic basis, the univalency of the 

mapping is checked graphically. A mapping is accepted 
if the grid lines of the constructed mesh (i.e., the lines in the 
physical space images of r = constant or s = constant lines of 
the reference square) do not intersect anywhere in the 
physical space. 

It remains how to determine the parametrizations 7,. We 
restricted ourselves to the case where the 7i are defined 
analytically depending on the geometry we want to lit. 
Generalization to their discrete definition can be considered 
using basic CAD interpolation tools [28] but will not be 
discussed here. 

Bilinear transfinite interpolation F,,, together with spec- 
tral interpolation generates, therefore, in a pre-processing 
stage the finite elements meshes &,, associated to the 
collocation grids 9,+, which will be used as entry for the 
NavierStokes solver, described in the following sections. 

To close this section, we define the approximations of the 
local auxiliary continuous mappings f,Phys and fkRef from the 
parent element o. The standard approximation in this FE 
part is isoparametric, and without going into the details, the 
velocity interpolator defined in Eqs. (3.10) is used for this 
purpose. We have 

f ;,hhys = Zh ps, with h = 2, (4.6a) 
fRef = z fRef 

k,h hk, with h = 2. (4.6b) 

5. COLLOCATION METHOD AND FINITE 
ELEMENT PRECONDITIONING 

5.1. Chebyshev Collocation 

We use orthogonal collocation in the framework of the 
weighted residual methods [3]. The residuals to the pde’s 
and to the boundary conditions are obtained by inserting 
finite developments of the dependent variables (velocity, 
pressure) in terms of basis functions h,(z) on the reference 
square fi. Denoting by uN such a dependent variable, one 
has 

NXI Nx2 

uN= c 1 Uuhi(r)hj(S) (5.1) 
i=lJ j=O 

with 

hi(z) = 
(1 -z’) ThX(Z)( - l)‘+ l 

c&(z - ZJ ’ i E CO, NJ, 
(5.2) 

c, = CN, = 2; Fi= 1, Vie [l, ZV,- 11. 
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As per the isoparametric interpolation rule, geometry and because of the peculiar choice of the collocation points. 
data are interpolated in the same fashion, that is, Chebyshev collocation derivation can be accomplished 

NXl Nx2 
efficiently by the means of a discrete Chebyshev transforma- 

xN= c c xijhi(r)hj(s), (5.3a) 
tion method [ 133. 

i-0 j=o 
Similarly, the discrete mapping jacobian is Composed 

NXl -2 
as in Eq. (5.6) through the collocation (physical space) 

YN= 1 1 yzjhitr) hj(s)* 
(5.3b) product of the discrete values of expressions (5.7a) to (5.7d) 

i=lJ j=O and interpolated by 

The projection method imposes that the scalar product of 
the residuals with Dirac functions vanishes. Denoting by 
Res, these residuals, one obtains 

(Res,(x,), 6(x - xi)) = 0, VX,E gN. (5.4) 

Here, the collocation nodes are those of the physical GLC 
grid. Applying the collocation procedure to the linearized 
equations (2.5~(2.7), the discrete equations in the 
physical space are expressed as collocation equations over 
the reference square. Mapping derivation rules gives, in 
reference square coordinates, 

NXl Nx2 

JN= 1 c J&(r) hi(S). (5.9) 
i=O j=O 

The discrete equations are formulated in the reference 
space d using the discrete expressions provided by (5.5) 
through (5.9). 

The solution of this resulting algebraic system presents 
some major drawbacks (discussed in [ 15]), basically the 
large bandwidth of the resulting matrix and the O(N4) 
conditioning of the viscous part of the operator [22]. 
Therefore, the collocation system is preconditioned by FE 
in order to benefit from existing codes with lower computa- 
tional work [ 14-163. 

' (5.5) 5.2. Finite Element Preconditioning 

with the transformation jacobian J, 
The numerical scheme is based on the preconditioned 

Richardson iteration technique. Formally we write 

(5.6) 

In order to derive the new discretized equations, we first 
define the interpolants of the geometric transformation 
factors, 

2= z 5 xc)hi(r) hi(s), 
i=O j=O 

(5.7a) 

2= z 5 xF)hi(r) hj(s), 
i=O j=O 

(5.7b) 

2= z ? yl,)h,(r) hj(s), 
i=O j-0 

(5.7c) 

(5.7d) 

L(Gxk+’ -6xk)= -u,(L”,Gxk-b”), (5.10) 

where 
i=L,, 

is a finite element approximate operator. In (5.10), the 
superscript k denotes the Richardson index. The initial 
guess of (5.10) is computed by 

6x0 = INYh, (5.11) 

where yh is the solution of the system resulting from the 
discretized associated FE problem. A standard Galerkin 
technique was used for this purpose. More details about 
this particular part may be found in [lo]. The subsequent 
iterations are carried out using the relationship: 

8xk+’ = 6xk - CL~Z~N(L;~)-’ {Res,,}. (5.12) 

where the x!l) , . . . . y!s’ refer to the collocation values of the 
derivatives i: the r & s direction. 

The notation Res,, is used for the finite element right- 

The derivation of functions as interpolated by Eq. (5.1) is 
hand side constructed upon the equation residuals when the 

performed in Chebyshev space as the alternate equivalent 
natural boundary conditions are taken into account. Given 

form of Eq. (5.1) is 
a finite element test function @h in I’!,,, we have 

NXl Nx2 
Res FE = 

s R 
(L”cbxk - bn)N+h dQ + j” (1,.,(6tk + t”) 

UN= c c km Tn(r) Tm(s)p (5.8) 
aa 

n=O m=O - zf’,Nk2)) ‘bh dr. (5.13) 
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The convergence of (5.10) or (5.12) depends strongly on 
the eigenvalue spectrum of L;d L,. For the Stokes operator 
over rectangular geometry, Demaret and Deville [9] 
showed that the nine-nodes Lagrangian element yields an 
optimum rate of convergence when cxk is set to the value f. 
practically, the same value also produced optimum con- 
vergence for Stokes problems over curvilinear geometries. 

As the “convergence radius” of the Newton’s method is 
small, the solution for a given Reynolds number is obtained 
through analytic continuation. The algebraic solver is a 
sparse matrix Gaussian elimination with minimum degree 
ordering [ 191. 

6. DOMAIN DECOMPOSITION 

The basis for the domain decomposition techniqui is 
described in [lo]. The domain B is broken up into several 
subdomains QP, p = 1, . . . . P. The decomposition satisfies 
properties such that in the preconditioner they lead to 
conforming finite elements over each subdomain. 

For each one of those subdomains @‘, a suitable map- 
ping associates the GLC grid in the reference square to the 
corresponding physical collocation grid (or sub-grid) 3;. 
When the geometry departs from the straight rectangle, 
a Gordon transfinite interpolation from the boundary 
parametrizations replaces the alline mapping. One has 

% = Fl;,(g,v), (6.1) 

with gN defined in (3Sb) and thus F$‘, either is constructed 
as in Eq. (4.4) or by simple afhne coordinates transforma- 
tion. 

The overall collocation grid is now composed of the 
collection of the sub-grids 3; 

sfN= fi s;, (6.2) 
p=l 

and, similarly, the associated FE mesh is 

Y.N= 6 SC,,. (6.3) 
p=l 

The space where collocation solutions are sought is defined 
by 

~]t={u~c’(~)I-vJnp~P,,p=l,..., P}, (6.4) 

where NP denotes the couple (NC,, N&) E N x N. 
The set r contains all the boundary segments in the entire 

geometry, whether those segments are external or not. The 
interfaces, i.e., the boundaries of each subdomain sZp shared 
by other subdomains are contained in the subset ri. 
Therefore, we have 

r=redndi, 

ri= fi ry, 
q=l 

(6.5) 

with Q as the total number of internal boundary segments 
appearing in the geometry, independently of any subdomain 
reference. 

The collocation interpolator is extended to the domain 
decomposition (see [lo]). On the set of boundary segments 
r, one defines the spectral interpolation operator: 

vrb E r, b = 1, . . . . B, 
Z i-,N: COVb) + p,,, 

241 

Z 
T,N = 

NXj polynomial degree on rb, 
(zr,Nt)(Xi) = t(x,), (6.6) 

t/xi E gN n r, and $& n r,, 
0, vxiEefNn r,. 

The idea of the interface treatment within the domain 
decomljosition [4] is detailed in [lo]. The key lies in the 
correspondence between an overall solution over the entire 
domain and the combination of the solutions over each sub- 
domain that one may derive from a weak formulation of the 
problem. In the decomposed method, each weak solution 
generates a normal flux (a suitable normal derivative) at the 
interfaces. When combined to provide the overall solution, 
those subdomain solutions will be equivalent to the global 
solution if the interface contributions cancel each other, in 
other words, if the interface jumps of the normal flux do 
vanish. If integrated in an iterative process, this is expected 
to be satisfied at convergence. 

In the generalization of this concept to the Navier-Stokes 
equations, the associated flux is the stress vector (2.4). 
Consequently, the preconditioned scheme of the linearized 
Navier-Stokes equations detailed in (5.15) is generalized. 
We have as before 

6xk+‘=gx”-akZN(LnFE)-l {Res,,} (6.7) 

but the term Res,, which is the finite element right-hand 
side constructed upon the equation residuals, takes into 
account the natural boundary conditions and now incor- 
porates jumps of the normal stress vector. Given a finite 
element test function & in Vi,h, we have 

Res FE = j&6X’-b”),+,dS;,+~ (zr,,(6tk+tn) 
r” 

- zI:N(&)) ‘!‘I, dr 

- 5 [z,,,(6tk + t”)] d’/, dT, (6.8) r, 
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where the term between brackets [ ] indicates the jump of 
the quantity over one internal boundary segment. 

The Co continuity of the flux induced at convergence (if 
any) by a vanishing jump across internal boundaries 
involves an integral form of C’ continuity of the velocities 
over the entire domain and a Co continuity of the 
divergence across internal boundaries. 

The computations of the discrete normal flux t along each 
segment are performed using Chebyshev interpolants for the 
components of the Cauchy stress tensor u as well as for the 
geometric characteristics of the segments (normals n and the 
1D jacobians). 

In this last section, a crude estimate of the storage 
requirements implied by our preconditioned collocation 
method is presented. We will consider the case of the dis- 
cretization of the Navier-Stokes equations over one single 
domain by .Af = N,, * N,, polynomials. The preconditioned 
system is the one described in Section 5 which, using FE 
notations, also takes the form 

Kdx=r. (6.9) 

The total number of FE unknowns in the FE pre- 
conditioner, by use of Q2-Q 1 FE interpolants, is 
JIr%! = 2 * (2N,, - 1) * (2N,, - 1) (biquadratic velocity 

components) + JV” (bilinear pressure), and the number of 
FE elements is nelem = (N,, - 1) * (N,, - 1)(0(X)). The 
maximum number of connected unknowns in a row of the 
FE system (6.9) is bounded by 59, as in the FE discretized 
momentum equations, a velocity unknown on a vertex 
which belongs to four different elements will be globally 
connected to 2 * 25 velocity unknowns and to nine pressure 
unknowns. In our method, the stiffness matrix K and the FE 
r.h.s. r are built before entering any solution procedure and 
this requires 59X@ (for K) + Jlr% (for r) words of storage. 
The solution is stored in an additional Jf@ words vector. 
This evaluation leaves out the extra storage required by the 
algebraic solver. 

7. NUMERICAL RESULTS 

In this section, the performances of the method described 
previously are investigated. When possible, the computed 
solution is compared to the exact solution through the 
relative analytical error, denoted by Einf, evaluated all over 
the collocation nodes as 

maxsN ( Ixcomp - xexact I 1 
&inf = 

maxgN ( I xexact I 1 ’ 
(7.1) 

Single Subdomain or 4 Rectilinear Subdomains 

FIG. 7.1. Flow in a divergent channel: problem description and domain decomposition. 
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where xexact is the exact solution vector and x,,,~ the 
numerical solution. In order to ease the notations, a 
subdomain is sometimes referred to as a macro (element). 

7.1. Hamel Flow 

To begin with numerical tests, the computed Stokes flow 
in a divergent channel is compared to the exact solution. 
The exact solution given by Hamel [23] is written in a 2D 
Cartesian reference frame as 

QX x*--y* 
U=m 

x +Y ( 
2 - cos(2cr) 
x +Y > 

1 
’ sin(2a) - 2a cos(2cr)’ 

,=A x*-y* 
x +Y ( 

--cos(2a) 
x2 + y* > 

1 
’ sin(2a) - 2a cos(2cr)’ 

* 

(7.2) 

-2pQ x*-y* 1 ~- 
’ = x2 + y* x2 + y* sin(2a) - 2~ cos(2cr) -+-PO, 

where 0 is the flow rate, 2cr the total included angle of the 
aperture, and p. is the constant reference pressure. 

Figure 7.1 depicts the problem geometry and the type of 
boundary conditions used in the simulations. The domain is 
restricted to the upper half of the channel and symmetry 
is imposed on the axis, while, on the remaining segments, 
essential boundary conditions are obtained using (7.2). The 
constant pressure p. is determined such as to impose a zero 
pressure at the tip of the symmetry segment. In all the 
simulations, the viscosity and the flow rate over the entire 
divergent were set to 1 and 2, respectively. 

This problem was solved for two different apertures 
(a = 5 and 20”, respectively), using mono-domain as well as 
multi-domain decomposition. The number of polynomials 
used is the same in both directions, for all the numerical 
tests, although this is not constrained by the method. The 
performances are analyzed as a function of the total number 
of degrees of freedom (d.o.f.) in both directions regardless of 
the type of decomposition used. For instance, for 11 x 11 
(global) d.o.f., 11 x 11 polynomials will generate the spatial 
discretization of the single domain, whereas the decomposi- 
tion will use four subdomains discretized by 5 x 5 polyno- 
mials each. Thus, the multi-domain case is said to have 
11 x 11 equivalent (eq. ) d.o.f. 

7.1.1. Effect of the rectilinear distortion. First, we 
compare solutions produced at 5 and 20” apertures over a 
single domain. The collocation grid is distorted, although 
not curved. For both apertures, relative errors (as Eq. (7.1)) 

Spatial Refinement Convergence Hamel Flow XX0 deg. angle 

l.e-2 

l.e-4 

l.e-6 - Single 
5 deg. 

0 10 15 20 
Number of Polynomials in Each Direction 

25 30 

Single Macro 

5 deg. U Vel. Component + 
V Vel. Component - 

P Pressure + 
20 deg. U Vel. Component + 

V Vel. Component A- 
P Pressure + 

Relax. : 0.6666 

FIG. 7.2. Hamel flow in single domain (5” and 20” angle): spatial refinement convergence. Evolution of the max. relative analytical error (Eq. (7.1)) 
with respect to the polynomial degree in each direction. 
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decay exponentially with the increasing global number of 
degrees of freedom (N). This demonstrates that spectral 
convergence is achieved by the proposed method. Figure 7.2 
compares the spatial refinement effect: the larger included 
angle and its consequent higher mesh distortion result in a 
slowed down decay, which remains exponential anyway 
(globally proportionnal to e-1.7N for a 20” angle against 
e-2.8N for a 5” angle). One could observe that at equivalent 
spatial discretization, the consequent accuracy is not as 
good with a 20”aperture as with a 5” aperture since the solu- 
tion exhibits more spatial complexity and therefore requires 
more polynomials to produce an equivalent representation. 

Hamel Flow 5” Angle, Single Domain 

d.o.f. 

5x5 
9x9 

13 x 13 

Note. L, norms of collocation divergence operator (V, . ) applied to 
the exact velocity field (u,,~) (Eqs. (7.2)) and the computed one (II,,,& 
for different global number of d.o.f. 

The collocation divergence operator may also help to 
shed light on the effect of the polynomial degree on the 
achieved accuracy. When applied respectively to the exact 
and to the computed velocity fields, it informs on how the 
current polynomial degree represents the solutions, together 
with the geometric effects, and on how well the computed 
solution approaches the exact one. Tables I and III report 
the L, norms (over the collocation nodes) of the colloca- 
tion divergence operator V, * , applied to the exact and to the 
converged velocity held as well. This latter case also gives a 
norm for the strong residual of the continuity equation. All 
the internal nodes (including interfaces) are involved in the 
computation of the L, norm. Both values have the same 
order of magnitude, whatever the spatial discretization is, 
and drop down to lo-‘* with increasing polynomial degree. 

This indicates that for a given polynomial degree, the solu- 
tion obtained at the end of the iterative process could only 
be improved by increasing the number of polynomials to 
represent it. In the rectilinear case (5 and 20”), the error due 
to the mapping is not significant since the exact coordinate 
transformation F is a second-order polynomial and may 
be represented with full accuracy by very few Chebyshev 
polynomials. 

Convergence histories of the Richardson processes 
exhibits the same dependency: one reaches a stagnation 
plateau or goes down to machine accuracy, depending on 
the number of Chebyshev polynomials used. Typical con- 
vergence histories are compared, for instance, in Fig. 7.3 for 
a 20”-aperture single domain case. When the degree is large 
enough (21 x 21 polynomials in each direction), 25 itera- 

l.e-6 - 

l.e-8 - 

TABLE I 

v,. (%act) 

6.0673e - 05 
2.5873e - 10 
6.4614e - 13 

v, b,omp) 

7.1511e-05 
1.2501e - 09 
1.7533e - 12 

Richardson Convergence History 

0 5 10 15 
Richardson Iteration Number 

Hamel Flow 20 deg. angle 

Single Macro 

U Velocity Component - 
V Velocity Component - - 

P Pressure - - 

Relax. : 0.6666 

FIG. 7.3. Hamel flow in single domain 20” angle: Richardson convergence history. Evolution of the maximum relative analytical error during the 
Richardson process with respect to the polynomial degree in each direction. 
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l.e-6 

l.e-8 

l.e-10 

l.e-12 

l.e-14 

Richardson Convergence History 

I I I I 

0 

Hamel Flow 20 deg. angle 

Single Macro 21x21 

U Vel. Increment + 
V Vel. Increment .A 
P Pres. Increment * - 

U Mom. Eq. Residual o 
V Mom. Eq. Residual a 

Div. Eq. Residual * 

Relax. : 0.6666 

0 5 10 15 20 25 

Richardson Iteration Number 

FIG. 7.4. Hamel flow in single domain 20” angle (21 x 21 d.o.f.): Richardson convergence history. Evolution of the maximum Richardson increment 
(Eq. (5.12)) during the Richardson process together with the L, norm of the strong residuals to the governing equations. 

Spatial Refinement Convergence Hamel Flow S/20 deg. angle 

l.e-4 - 

l.e-6 - 

h-8 
t 

l.e-10 
t 

Macro Xl lt4 
5 dee. 

0 5 10 15 20 25 30 

Number of Polynomials in Each Direction 

4 Macros Structure 

5 deg. Macro #1 U + 
Macro #1 V - 
Macro #l P + 

Macro#4U a 
Macro#4V Ae-- 
Macro#4P -8.- 

20 deg. Macro #l U +- 
Macro #l V - 
Macro #l P + 

Macro #4 U *- - 
Macro #4 V A- - 
Macro #4 P +- - 

Relax. : 0.6666 

FIG. 7.5. Hamel flow in four rectilinear subdomains (5 and 20” angles): spatial refinement convergence. Evolution of the maximum relative analytical 
error (Eq. (7.1)) with respect to the polynomial degree in each direction. 
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TABLE II 

Hamel Flow 5” Angle, Four Rectilinear Subdomains 

d.o.f. 

9x9eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

vc (uexact) vc. hnP) 

3.7696e - 07 4.59% - 06 
4.1369e - 07 4.8163e -06 
2.8712e - 07 3.3196e -06 
3.1291e -07 3.5846e - 06 

13xl3eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

1.8119e-09 
2.2397e - 09 
1.0645e - 09 
1.2981e-09 

4.5157e-09 
4.9513e - 09 
3.0948e - 09 
3.3492e - 09 

29 x 29 eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

1.5884e - 12 
1.748& - 12 
1.2306e - 12 
1.0526e - 12 

1.2285e - 12 
9.0245e - 13 
7.5294e - 13 
5.3957e - 12 

Note. L, norms of collocation divergence operator (V,.) applied 
to the exact (u,,,~) and the computed (u,,,~) velocity fields for different 
numbers of global d.o.f. 

tions in the Richardson process produce machine accuracy. 
For this latter case, Fig. 7.4 illustrates the evolution of 
the equation residuals, together with the Richardson 
increments produced in the process. The solution at first 
iteration represents a finite element solution over the 
Chebyshev mesh. The improvement brought to the 
standard FE technique by the present spectral method is 
quantified by several orders of magnitude gained in the 
accuracy after relatively few iterations. The relaxation factor 
was set to f, the value which showed the best convergence 
rate, independently of the geometric distortion considered. 

7.1.2. Effect of the domain decomposition. The domain 
is now decomposed into four rectilinear subdomains 
(Fig. 7.1). Spatial refinement influence is studied in the same 
way as in the single-domain case for the 5 and 20” angle 
geometry. Similar error decay behaviour, as with a single 
macro structure, may be observed in this multi-domain case 
on Fig. 7.5: the larger the distortion, the slower the decay 

TABLE III 

Hamel Flow 20” Angle, Single Domain 

d.o.f. vc (uexact) v,. bbnp) 

5x5 4.5278e - 03 5.8545e - 03 
9x9 7.9938e - 06 1.2815e-05 

13 x 13 4.9892e - 10 8.8628e - 10 

Note. L, norms of collocation divergence operator (V, ) applied 
to the exact (u,,,,J and the computed (u eomp) velocity lield for different 
numbers of global d.o.f. 

of the relative errors. But, at equivalent geometry and 
equivalent global number of d.o.f., the multi-domain solu. 
tion at convergence is less accurate than the single-domain 
solution, as one could compare from Figs. 7.2 and 7.5. This 
was already referenced by Canuto [4] and Demaret [lo]; 
geometry splitting does not affect the global number of 
polynomials required to seize up the solution variations. 
For instance, to achieve an overall 1O-9 relative error 
(20” aperture), it requires 13 x 13 d.o.f. over a single domain 
and 17 x 17 eq. (9 x 9 over each macro) in the four-macro 
structure. We should emphasize that it is only true when the 
solution is smooth over the entire computational domain. 
In fact, multi-domain decomposition enhances final 
accuracy when it allows one to cover steep gradient regions 
by subdomains (in the case of boundary and/or inner 
layers) and therefore produces better local approximation 
Clll. 

Although the same discretization is used over the four 
macro elements, the quality of the polynomial representa- 
tion varies as illustrated by the dispersion of the curves in 
Fig. 7.5. Different solution behaviours and somewhat dif- 
ferent geometric deformations over the subdomains result in 
the peculiar relative accuracy level achieved. Overall error 
decay with refined spatial discretization is not affected. 
Tables II and IV present the effects of the polynomial degree 
and multi-domain decomposition on the accuracy. Here 
again, the domain decomposition does not affect the quality 
of the approximation: the projected computed divergence is 
close to the projected analytical one and drops to machine 
round-off. Convergence histories of the Richardson process 
do not depart from the single macro case: instead of a single 
curve for the relative error over a given variable, one finds 
a set of four slightly shifted curves depending on the corre- 
sponding macro but with the same trends and characteristics 
as in the single macro case. The relaxation factor was also 
set to 3 from numerical observations. 

TABLE IV 

Hamel Flow 20” Angle, Four Rectilinear Subdomains 

d.o.f. 

13xl3eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

vc. (uexact) 

6.4986e - 06 
9.9423e - 06 
4.719Oe - 07 
8.6107e - 07 

v, obn,) 

9.089Oe - 06 
1.326Oe - 05 
1.7112e-06 
2.5386e - 06 

25 x 25 eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

2.1004t-11 
2.9127e-11 
1.4782e - 13 
1.9725e - 13 

3.2658e - 11 
4.3611e-11 
2.766Oe - 12 
8.046Oe - 12 

Note. L, norms of collocation divergence operator (V, . ) applied to 
the exact (u,,,~) and the computed (II,,,) velocity field for different 
numbers of global d.o.f. 
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Bulging Decomposition 29x29 d.o.f. eq. 

Wedging Decomposition 29x29 d.o.f. eq. 

FIG. 7.6. Hamel flow at 5” angle: sketches of the curvilinear domain decomposition in “wedging” and “bulging” cases and the corresponding meshes 
for a 29 x 29 eq. d.o.f. over the entire geometry. LS denotes the typical length scale of the decomposition. 

7.1.3. Effect of the curvilinear distortion. To treat large 
grid distortions, the geometry of the divergent channel at a 
5” aperture is decomposed into four curved macro elements. 
The effect of increasing deformation is studied. The sub- 
domain curvature is obtained by the superposition of a 
sine wave over the separating segments between the sub- 
domains. The curvilinear distortion parameter D is defined 
as the ratio of the sine wave amplitude to a macro charac- 
teristic length. Two types of decomposed geometry are con- 
sidered: the first decomposition (referred to as “wedging”) 
creates a sharp wedge in the subdomains geometry, the 
second one does not (called “bulging”). Typical meshes are 
shown in Fig. 7.6. On Figs. 7.7, one can note that even for a 

small value of the distortion parameter D the loss in 
accuracy is quantified by several orders of magnitude, 
whether wedges are present or not in the geometry. The 
polynomial representation must be increased to 15 x 15 
polynomials in each macro element (29 x 29 global degrees 
of freedom) to reach machine round-off in the least dis- 
torted cases. This striking feature of the distortion effect 
is enlightened by comparison of L, norm values of the 
collocation divergence operator in Tables II, V, and VI 
when the global d.o.f. are equivalent. For the 13 x 13 case, 
we observe a loss of about five orders of magnitude (40% 
distortion with respect to the rectilinear case). We interpret 
this loss by the high-degree polynomial representation of F 

TABLE V TABLE VI 

Hamel Flow 5” Angle, Four Curved Macro Elements 40% 
Distortion, “Wedging” Configuration 

Hamel Flow 5” Angle, Four Curved Macro Elements 40 % 
Distortion, “Bulging” Configuration 

d.o.f. d.o.f. 

13 x 13 eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

3.5078e - 03 2.081Oe - 03 
9.3185e -04 9.6124e-04 
1.1274e - 03 1.2314e -03 
1.1275e - 03 58347e - 04 

13xl3eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

9.7599e - 04 8.264Oe - 04 
9.3183e -04 8.264Oe - 04 
1.1275e -03 7.5131e-04 
1.1275e -03 5.3394e - 04 

29 x 29 eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

1.2176e -09 
2.8921e - 09 
1.4689e - 09 
7.6778e - 10 

1.0321e - 08 
2.349Oe - 09 
2.7792e - 08 
1.9147e - 09 

29 x 29 eq. 
Macro 1 
Macro 2 
Macro 3 
Macro 4 

2.731Oe-09 
2.8921e - 09 
7.7462e - 10 
7.6775e - 10 

1.9941e - 09 
2.1137e-09 
8.8139e - 10 
8.6647e - 10 

Note. L, norms of collocation divergence operator (V, ) applied to Note. L, norms of collocation divergence operator (V, ) applied to 
the exact velocity field (u,,,,) and the computed one (ucomp) for different the exact velocity field (u,,,,~) and the computed one (u,,,,,~) for different 
numbers of global d.o.f. numbers of global d.o.f. 

581/106/2-l 
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FIG. 7.7. Hamel flow in four curved subdomains 5” angle; bulging (a) and wedging (b) cases: effect of the curvilinear distortion. Evolution of the 
maximum relative analytical error (Eq. (7.1)) with respect to the distortion parameter for different spatial discretizations. 
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FIG. 78. Hamel flow in four curved subdomains 5” angle; bulging (a) and wedging (b) case: spatial refinement convergence. Evolution of the 
maximum relative analytical error with respect to the polynomial degree in each direction. 
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which induces non-constant coefficients in all derivatives. 
Therefore, an accurate approximation of the divergence 
operator requires almost a doubled polynomial degree in 
order to resolve both the velocity field and the mapping 
complexity. Even for low distortion, the presence of the tri- 
gonometric functions in the mapping has a large impact on 
the final accuracy (Fig. 7.7). But still, the mesh refinement 
effect exhibits in both cases a spectral convergence as 
demonstrated by Figs. 7.8. It is noteworthy that the very 
distorted elements in the “wedging” case do not alter the 
solution compared to the “bulging” case (same levels of 
relative errors and projected divergence). Typical velocity 
and pressure plots are shown in Fig. 7.9a-c for the most dis- 
torted cases to illustrate the overall C ’ continuity achieved 
by the method. 

7.2. Wannier-Stokes Flow 

As a second test problem, we consider the two-dimen- 
sional steady Stokes flow past a cylinder close to a moving 
wall. The computational domain is open except for the 
bottom wall which moves in its own plane with constant 
velocity. The analytical solution, derived from Wannier 

[ 3 1 ] in the theory of lubrication for this complex-geometry 
flow allows also for reliable study of the errors induced 
by non-rectangular geometries in the present solution 
procedure. Other authors also solved this problem as a test 
case [24]. The exact solution and the particular parameters 
of the test are given by 

UC- W + F.) 
Kl (s+y)+z(s-y)}-An(z) 

-~{(“-2y)-2y(s~y)2}-D; 
2 2 

lJ=- “‘K” +KFy) (K2 _ Kl) -Wb2+ Y) 

1 2 1 

=v(~ - Y). - 
K; ’ 

Horizontal Velocity Component 

Vertical Velocity Component 

(7.3) 

Bulging Geometry Wedging Geometry 

FIG. 79. Hamel flow in four curved subdomains 5” angle: isocontour lines of (a) the horizontal velocity component; (b) the vertical velocity 
component; (c) the absolute pressure; in the “wedging” (left) and “bulging” (right) cases. 
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b 

FIG. 7.10. Wannier-Stokes flow: sketch of the curvilinear domain decomposition (a) and the corresponding mesh with 9 x 9 d.o.f. per subdomain (b). 

with - 

A=- U,d. 
In(r)’ 

B=2ud+4 
In(Z) ’ 

C=2Ud-4 
In(r) ’ 

D= -U,, 

u F=L 
In(r)’ 

(d+s). r- 
(d-s)’ 

The length scale (LS) is four times the radius R of the 

TABLE VII 

Wannier-Stokes Flow 

d.o.f. 

Macro 11 
5x5 
9x9 

11 X 11 

vc @Lact) v, bL,,p) 

4.66746e - 01 4.36279e - 01 
8.51745e - 03 8.05868e - 03 
8.71785e - 04 8.27297e - 04 

Macro 23 
5x5 
9x9 

11 x 11 

1.34699e - 02 
l.l2791e-OS 
1.68949e - 06 

1.34822e - 02 
1.41125e - 05 
1.68756e - 06 

macro 24 
5x5 
9x9 

11 x 11 

7.1743Oe-04 
3.55075e - 08 
4.86738e - 10 

7.76506e - 04 
7.14591e - 07 
1.08367e - 08 

Note. L, norms of collocation divergence operator (V, . ) applied to 
the exact velocity field (u,,r, as in Eqs. (7.3)) and the computed one 
(n,,,r) for different numbers of global d.o.f. 

cylinder, the distance d from the cylinder center to the wall 
is 0.5, and the constant wall velocity U, is 1. 

To solve this Stokes problem, the geometry was decom- 
posed into 26 subdomains. The spatial discretizations 
varied from 5 x 5, 9 x 9, and to 11 x 11 d.o.f. in both direc- 
tions for each subdomain. The structure and a typical mesh 
are shown in Figs. 7.10. The essential boundary conditions 
used at the boundaries of the truncated domain were com- 
puted from the exact solution (7.3). Computed velocity 
components, vorticity, and pressure fields (obtained with 
the 9 x 9 discretization) are displayed in Figs. 7.1 la-d. The 
effect of the relined spatial discretization is illustrated in 
Fig. 7.12 for typical subdomains in the geometry. The decay 
of the relative analytical error is also exponential but very 
distorted curvilinear macro elements limit its rate over the 
entire geometry. This is also illustrated in Table VII, where 
we compare the L, norms (over the collocation nodes) of 
the collocation divergence operator V; applied on the exact 
and on the converged velocity field as well. The effect of the 
high distortion is found in the relatively slowest decay in the 
most distorted macro element (macro # 11) and in the 
largest L, norm. One should note that this macro also 
covers the region between the cylinder and the moving wall 
where the flow exhibits its full dynamics. Although the 
accuracy achieved in the coarsest mesh is poor, that mesh 
still provides a good approximation of the solution as 
demonstrated in Fig. 7.13 by the pressure profiles computed 
at different horizontal cross sections in the geometry (refer 
to Fig. 7.10 a for the definition of those cross sections). 

7.3. Plane Constricted Channel 

In this last problem, we consider a plane channel present- 
ing a cosine constriction (Fig. 7.14). This problem was 
already treated by finite element methods [7] and fourth- 
order compact differences [2]. The channel presents a 
longitudinal symmetry and the computational domain is 
thus restricted to its upper half. The geometry is divided into 
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FIG. 7.11. Wannier-Stokes flow: isocontour lines of (a) the horizontal velocity component (global view); (b) the vertical velocity component 
(global view); (c) the absolute pressure (enlarged view around the cylinder); (d) the vorticity (enlarged view around the cylinder). 

three parts whose respective lengths are I,, 1, and 12. Each 
boundary section is described by the functions: 

y(x)= fl; O<x<l, 

=flf~(l-cos2?r(x-l,)); 

Ii<x<li+l 

= +1, II + 1 <x < 1, + I, + 1, 

where I is the constriction parameter whose values range 
between zero and one. This parameter compares a channel 
typical length scale LS (the channel half-width) and the 
depth of the cosine constriction. The Reynolds number is 
defined as the ratio of the total flow rate per unit length 
and the kinematic viscosity. The total flow rate per unit 

length was set to two and the inflow and outflow boundary 
conditions are: 

(i) at the inlet, a Poiseuille velocity profile: 
u=lS(l--y2),u=O; 

(ii) at the outlet, natural boundary conditions: t,=O, 
v = 0; 

(iii) on the symmetry axis: du/dn = 0, u = 0; 

with t, the normal component of the stress vector 
m. (2.4)). 

The lengths I, and I2 are chosen long enough such as to 
ensure a reasonable development of the flow far away of the 
constriction. The upstream region I, is 3.5 long and the 
downstream region length l2 is 9.5. In this paper the only 
results presented are obtained for the 50% constrictions 
which exhibits a strong geometric stiffness. The computa 
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Spatial Refinement Convergence Wannier-Stokes flow 

1X-2 - 

ls-4 - 

l.e-6 - 

l.e-8 - 

l.e-10 - 

l.e-12 - 

1X-14 - 

Macro #l 1 

Macro $23 

Macro #24 

Spatial Discretization 
5x5 d.o.f to 11x11 d.o.f 

in each subdomain 

- Macro #ll U Vel. Component a- - 
V Vet Component +3 - 

- Macro #23 U Vel. Component ft 
V Vel. Component - 

_ Macro 1124 U Vel. Component -D- 
V Vel. Component d- 

Relax. : 0.6666 

I 1  1 I I , I , 

2 4 6 8 10 12 14 

Number of Polynomials in Each Direction 

FIG. 7.12. Wannier-Stokes flow: spatial refinement convergence. Evolution of the maximum relative analytical error with respect to the polynomial 
degree in each direction for some typical suhdomains (refer to Fig. 7.10a). 

Absolute Pressure Distribution 

6 

-6 

, y=o.25 

, y=o.125 

-8 ’ I 1 1 I I I I I I 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Distance along the Wail (in length scale IS) 

Wannier-Stokes flow 

Horizontal Cross Sections at 

y=O.125 LS sad y=O.25 LS 

Discretization 5x5 d.o.f/macro -. 
9x9 d.o.f/macro - - 

11x11 d.o.f/macro - 

FIG. 7.13. Wannier-Stokes flow: evolution of the absolute pressure along chosen horizontal cross sections under the cylinder (refer also to Fig. 7.10a) 
for different polynomial degrees. 
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Domain Decomposition and Meshes 

FIG. 7.14. Plane constricted channel: (a) definition of the problem geometry; (b) sketch of corresponding domain decomposition; (c) D 1 discretiza- 
tion mesh; (d) 04 discretization mesh. 

tional domain was split into six subdomains with four dif- 
ferent spatial discretizations “Di’s” (the discretization must 
conform at subdomain interfaces) which are characterized 
by the number of polynomials used in the two macro 
elements under the constriction, D 1: 7 x 7; 02: 11 x 11; 
03: 15 x 15; and 04: 19 x 19. 

The channel flow was simulated at increasing Reynolds 
numbers 0,50, and 100. The Figs. 7.15a-d detail the solution 

obtained at Re = 100 over the 03 discretization in the form 
of velocity components, pressure, and vorticity contours, 
with the focus on the constriction region. The reader should 
note the apparent C’ continuity at the macro interfaces of 
the vorticity field, which, as a secondary variable spectrally 
computed from the velocity components representation, is 
not ensured to be C’ by the method. Table VIII illustrates 
the spatial refinement effect in this case by means of the 

FIG. 7.15. Plane constricted channel (50% constriction) at Re 100: isocontour lines of (a) the horizontal velocity component (enlarged view around 
the neck); (b) the vertical velocity component (enlarged view around the heck); (c) the absolute pressure (enlarged view around the neck); (d) the vorticitY 
(enlarged view around the neck). 
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Absolute Pressure Distribution Plane Constricted Channel 

kO.5 Re=lOO 

FIG. 7.16. 
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-1 

-1.5 

-2 
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Distance along the Axis 

Horizontal Cross Section 
at y=O and y=OS 

Discretization : Dl - - - 
D2 -- 
D3 --- 
D4 - 

Plane constricted channel (50 % constriction) at Re 100: evolution of the absolute pressure along longitudinal cross sections in the channel 
ly=O symmetry axis and y = 0.5 just under the neck). 

variation of the L, norm of the velocity field divergence with 
the increasing polynomial degree in the strongly distorted 
macro elements on the constriction at the convergence of 
the Newton process. For the finest discretization used, the 
L,norm rates about lop2 after five Newton iterations while 
the last Newton corrections go down to 10-l’ for the 
velocity components and lop9 for the pressure. The same 
effect is checked in Fig. 7.16 and Fig. 7.17 by the compared 
evolution of some chosen variables with larger and larger 
polynomial degree. But for the coarsest Dl discretization, 
ail the evolution curves obtained cannot be distinguished, 
demonstrating that the solution is spatially converged. The 

TABLE VIII 

Constricted Channel Flow, 50 % Constriction at Re = 100 

02 discretization provided satisfactory results although on 
plots similar to those of Fig. 7.15 some wiggles are present 
in the contour lines. The strong constriction (50 % over one 
scale length) generates noteworthy steep gradients around 
the neck: in the vertical velocity component (Fig. 7.15), in 
the absolute pressure (Fig. 7.16), or in the stress com- 
ponents (Figs. 7.17) (the wall shear stress is normalized by 
the corresponding Poiseuille wall shear stress). Those 
gradients explain the relatively high value in the residuals 
obtained, even for the most refined mesh. Such steep varia- 
tions do not alter the performances of a spectral method if 
they coincide with one subdomain interface. Unfortunately, 
this is not the case in this problem as the wall shear peak is 
located slightly upstream of the contraction neck. But the 
quality of the results in such problems proves the robustness 
of the method. fl 

d.o.f. Macro 3 Macro 4 

IX1 9.24% - 02 1.657e -01 
11x11 5.527e - 03 1.411e-02 
15x15 2.433e - 04 5.432e - 03 
19 x 19 5.599e - 05 1.797e - 04 

Note. Discrete L, norms of continuity equation residual (at 
convergence after five Newton iterations) for different numbers of d.o.f. 
mthe third and fourth macro elements (see Fig. 7.14). 

8. CONCLUSIONS 

We are able to solve the steady Navier-Stokes equations 
in complex curved geometries with the proposed Chebyshev 
collocation method. The latter is preconditioned by a finite 
element technique based on biquadratic velocities and 
bilinear pressures. Relative errors in model curvilinear 
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FIG. 7.17. Plane constricted channel (50 % constriction) at Re 100: (a) evolution of the wall normal stress; (b) evolution of the normalized wall shear 
stress. 



CHEBYSHEV COLLOCATION 257 

Stokes problems present exponential decay whether the 
geometry is decomposed into subdomains or not. This 
demonstrates that the outstanding convergence properties 
provided by the Chebyshev polynomials still hold even 
in non-rectangular geometries. Complicated Navier-Stokes 
flows in a constricted channel were simulated using our 
multi-domain algorithm. 

The extension of our coupled velocity-pressure method 
to 3D problems is not immediate. The coexistence of both 
spectral and FE inf-sup compatible discretizations would 
limit drastically the applicability of the method to large size 
problems in terms of incore memory. The obvious aim is to 
reduce the number of unknowns required for the FE part of 
the algorithm. To this end, the mini element introduced by 
Arnold, Brezzi, and Fortin [ 1 ] based upon Q 1 velocities 
and Q 1 pressure approximations, including a bubble 
function is certainly a good candidate. In order to reduce 
the size of the algebraic systems to solve, a fully decomposed 
procedure could also be designed to solve iteratively each 
local subproblem. 
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